Article Access Statistics | | Viewed | 1052 | | PDF Downloaded | 46 |

 Click on image for details.
|
|
Dosimetric evaluation of the effect of dental restorative materials in head and neck radiotherapy
Elif A Oktay1, Tamer Zerener2, Bahar Dırıcan3, Selda Yıldız4, Omer Sager3, Serpil Karaoglanoglu1, Murat Beyzadeoglu3
1 Department of Restorative Dentistry, University of Health Sciences, Gulhane Faculty of Dentistry, Ankara, Turkey 2 Department of Oral and Maxillofacial Surgery, University of Health Sciences, Gulhane Faculty of Dentistry, Ankara, Turkey 3 Department of Radiation Oncology, University of Health Sciences, Ankara, Turkey 4 Department of Anatomy, University of Health Sciences, Ankara, Turkey
Correspondence Address:
Elif A Oktay, Department of Restorative Dentistry, University of Health Sciences, Gulhane Faculty of Dentistry, Ankara Turkey
 Source of Support: None, Conflict of Interest: None DOI: 10.4103/ijc.IJC_897_19 PMID: 33753619
Background: The aim of our study is to assess the dose enhancement from scattered radiation due to dental restorative materials used for occlusal and mesio-occlusal-distal (MOD) cavity filling during simulated head and neck radiotherapy.
Methods: We have studied the dose enhancement ratio (DER) of conventional amalgam, high-copper amalgam, and resin composite dental restorative materials at cadaver mandible teeth using 2 therapeutic photon energies of 1.25 MeV (Co-60 gamma ray) and 6 MV (Linac X-ray) for irradiation.
Results: DER values at buccal position for Co-60 and 6 MV X-ray were 1.250 ± 0.013 and 1.151 ± 0.012, respectively. For dental cavity fillings, DER values for 6 MV X-ray were 1.065 ± 0.021, 1.100 ± 0.014, and 1.162 ± 0.016 for resin composite filling, low-copper amalgam filling, and high-copper amalgam filling, respectively. Our results revealed that DER regarding irradiation energy was minimum for 6 MV X-rays. With respect to dental restorative filling material, DER was minimum for resin composite filling. Regarding the cavity type, our results with standard deviation (SD) calculations revealed that DER was slightly but not significantly different for both Co-60 gamma ray (1.25 MeV) and 6 MV X-ray energies for both occlusal and MOD cavities.
Conclusion: Our dosimetric results for a single beam geometry suggest that, among the three types of filling, resin composite filling is an ideal restorative filling material with minimal morbidity-inducing radiation dose enhancement that may result in increased osteoradionecrosis and secondary caries risk. There is a need for further dosimetric studies with actual clinical beam arrangements.
|